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ABSTRACT

Landscape- to continental-scale studies 
of forest disturbance and recovery typi-
cally rely on satellite image-based indices of 
vegetation condition. A recently proposed 
disturbance index that accentuates patches 
of disturbed forest has been used to detect 
fire and insect defoliation scars, but until 
now it has not been used to assess recovery 
over time. We used a weighted version of 
the index to emphasize canopy differences 
caused by fire while minimizing other dif-
ferences that may exist in the imagery to 
monitor succession following the 1988 
fires in Yellowstone National Park. Spectral 
estimates of moisture levels were the most 
important difference between burned and 
unburned patches, while differences in esti-
mates of photosynthetic activity were weak 
and decreased as succession progressed. 
Burned areas were clearly highlighted in the 
weighted images. Classifications based on 
the weighted index were reliably accurate, 
although they gradually decreased as succes-
sion erased the difference between disturbed 
and undisturbed forest. The weighted index 
successfully reduced the effects of differences 
that were not the focus of the research; the 
weights in particular helped maintain the 
sensitivity of the disturbance index through 
Yellowstone’s recovery.

Key Words: Disturbance Index, forest fire 
recovery, forest succession, greenness, lodge-
pole pine, Yellowstone National Park

INTRODUCTION

Identifying and mapping ecosystem dis-
turbances is an important task made more 
efficient through the use satellite imagery, 
especially at regional to continental scales. 
Recently, Healey et al. (2005) proposed a 
new image-processing technique, which they 
call the Disturbance Index (DI), that high-
lights forested areas that have been recently 
disturbed. The DI has been successfully 
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used to detect disturbance caused by insects 
(Deel et al. 2012; DeRose et al. 2011; Has 
et al. 2009; Wulder et al. 2006), logging 
and windfall (Dyukarev et al. 2011; Rick et 
al. 2010), armed conflict (Gorsevski et al. 
2012), and to map continental-scale distur-
bances regardless of the cause (Masek et al. 
2008). The DI has also been used to assess 
the effects of disturbance on the nitrogen 
cycle (Dyukarev et al. 2011; McNeil et al. 
2007) and to detect disturbance caused by 
the construction of new Walmart locations 
(Potere et al. 2008).

The DI is simple to calculate and interpret, 
but possibly its most useful advantage is that 
it can be fitted to specific disturbances and lo-
cations using weighting coefficients (Healey 
et al. 2005). In this way, disturbances of in-
terest can be highlighted while minimizing 
other differences that may be present in the 
image, such as those caused by atmospheric 
or climate change (Thayn 2013). This has not 
been assessed over time, as the forest recovers 
from the disturbance. In the current paper, 
we address the following key questions: (1) 
Do the weighting coefficients help the DI 
remain sensitive to disturbances even as re-
covery progresses, and (2) Does the weighted 
DI help reduce confusion between disturbed 
sites and areas that are naturally less verdant? 
We also began to assess qualitatively whether 
changes in the derived weights might reflect 
changes in biophysical conditions as succes-
sion progresses, although additional research 
and field work are required to fully assess this 
relationship. 

Images collected by satellite remote sens-
ing systems record relative measurements 
of solar energy reflectance, which can be 
used reliably as surrogates for vegetation 
condition. Kauth and Thomas (1976) and 
Crist and Kauth (1986) introduced a lin-
ear transform of satellite imagery, called 
the Tasseled Cap Transform (TCT), that 
converts satellite imagery into estimates 
of relative brightness (overall reflectivity), 
greenness (the amount of photosynthesis 
occurring), and wetness (including mois-
ture held in soil or in foliage). Healey et 

al. (2005) recognized that brightness in-
creases and greenness and wetness decrease 
in forested pixels that have been disturbed, 
and suggested that disturbed areas could 
be highlighted by subtracting the sum of 
the greenness and wetness values from the 
brightness value: DI = B - (G + W). DeRose 
et al. (2011) used this Disturbance Index 
(DI) to identify insect-caused mortality of 
Engelmann Spruce trees (Picea engelmannii) 
and noted that map accuracy increased with 
the severity of the disturbance.

Healey et al. (2005) suggested that weight-
ing the TCT components (brightness, green-
ness, and wetness) before calculating the DI 
might improve its ability to detect forest 
disturbances. Weighting the TCT values 
would fit the DI to local conditions and 
accentuate the disturbance of interest while 
dampening other differences that may be 
present in the forest canopy or in the satel-
lite data. Thayn (2013) used a weighted DI, 
which he called an optimized DI (DIopt), to 
map insect defoliation in deciduous forests 
in northern Wisconsin: DIopt = w1B - (w2G 
+ w3W), where w1, w2, and w3 are weight-
ing coefficients which are used to emphasize 
the TCT components that are more useful 
for detecting disturbance. Thayn found 
that disturbance detection was consistently 
better with the weighted DI than with the 
unweighted DI (2013).

In this paper, we report on a study of the 
recovery of the 1988 fires in Yellowstone 
National Park. The accuracy of disturbance 
detection was assessed quantitatively by 
comparing the results to a burn scar outline 
prepared and provided by the Yellowstone 
Spatial Analysis Laboratory (YSAL, 2013). 
Also, we compare our results qualitatively 
to the work of Turner and her colleagues 
(Turner et al. 1997, 1999, 2003, 2004) who 
have conducted extensive field work in Yel-
lowstone related to fire recovery. We make 
this comparison only to provide context 
for our results and as a sort of qualitative 
accuracy assessment. We do not attempt to 
draw conclusions about specific ecological 
processes.
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METHODS

We downloaded one cloud-free summer-
time image for each year from 1988 to 2003 
from the USGS Global Visualization website  
(GLOVIS, 2014). This time-series allowed us 
to examine 15 years of recovery time, which 
was sufficient to assess the value of weighting 
the DI. We attempted to select images from 
the same time of year (late summer to early 
fall) to avoid confusing seasonal change with 
successional change; however, extensive cloud 
coverage in some of these images pushed a 
few of our dates into early October. Imag-
ery from the Thematic Mapper (TM) and 
Enhanced Thematic Mapper plus (EMT+) 
sensors aboard Landsat 4, 5, and 7 were used. 
We also used a vector Geographic Informa-
tion System (GIS) outline of the 1988 fire 
produced and distributed by the Yellowstone 
Spatial Analysis Laboratory (YSAL 2013). 

The images were converted to the bright-
ness, greenness, and wetness TCT compo-
nent bands (Crist and Kauth 1986; Huang 
et al. 2002). Each TCT component was 
then converted to a z-score (Rogerson 2004 
p. 7) by subtracting from each pixel value 
the mean of healthy forest pixels and divid-
ing the result by the standard deviation of 
healthy forest pixels. We used a random point 
generator that placed points outside of the 
burn scar outline prepared by YSAL to col-
lect the sample of healthy forest values from 
which the mean and standard deviation were 
calculated. We reviewed these sample points 
to ensure that no points fell on roadways, 
water bodies, grasslands or other non-forest 
locations. Converting the TCT components 
to z-scores in this way effectively transformed 
them to their distance, in tasseled cap feature 
space, from healthy forest. For example, a 
pixel with a positive number in the z-score 
greenness band would be more green than 
healthy forest, a pixel with a negative number 
would be less green than healthy forest, and a 
pixel with a z-score near zero would be just as 
green as healthy forest (see Table 1 in Thayn 
2013). The further a pixel’s z-score is from 
zero, the further it is from typical healthy 

forest, making interpretation of the z-scores 
intuitive and simple.

The second, and most important reason 
the TCT components were converted to 
z-scores was to normalize the ranges of the 
components so that they were essentially 
equivalent. The original equation for the DI 
assumes that the three TCT components are 
of equal importance in identifying disturbed 
vegetation. If one component was composed 
of numbers that were twice as large as those 
of the other components, it would carry 
twice the weight of the other components. 
Converting the TCT components to z-scores 
gives each component the same spread of val-
ues and eliminates these hidden, unintended 
weights. Also, the z-score calculation is simi-
lar to dark object subtraction in that it can 
limit the effects of relatively homogenous 
atmospheric noise (Huang et al. 2010), so 
that other atmospheric correction may not 
be required (DeRose et al. 2011, Song et al. 
2001).

To derive the weights for calculating the 
optimized DI, we randomly selected 364 
training points from within the YSAL burn 
scar outline and 381 points from outside of 
the burn boundary. Each point was carefully 
examined to ensure that it fell on burned or 
unburned forest cover, not some other land-
cover. The TCT z-scores associated with these 
training points were submitted to an iterative 
Nelder-Mead optimization that maximized 
the chi-squared statistic of a Kruskal-Wallace 
test, just as in Thayn (2013). The Nelder-
Mead technique is a widely popular nonlin-
ear downhill approach to finding a local, uni-
modal solution (Bélisle 1992; Lagarias et al. 
1998). It is particularly useful for problems 
involving multiple interdependent variables, 
like the brightness, greenness, and wetness 
TCT components (Nelder and Mead 1965).  
The optimization was done using the “optim” 
function of the R statistical software (R Core 
Team 2012).

The Kruskal-Wallace test is a nonparamet-
ric, one-way analysis of variance based on the 
sums of samples’ observations’ ranks that is 
used to determine whether samples belong to 
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the same distribution (Kruskal and Wallace 
1952). Our data were not normally distrib-
uted so using a parametric test would have 
been inappropriate. The Nelder-Mead opti-
mization progressively changed the weighting 
coefficients and performed a Kruskal-Wallis 
test on the weighed TCT z-score data until a 
maximum chi-squared statistic was returned, 
indicating that the differences between the 
burned and unburned training samples had 
been maximized. The set of coefficients that 
returned the largest chi-statistic was then 
used to weight the images. This process was 
repeated for each year’s image so that differ-
ent weights were found for each year.

After masking the water bodies from the 
DIopt images, we classified each pixel as 
burned or unburned forest using a maxi-
mum likelihood classifier with training data 
sampled independently of the locations used 

to derive the weights. Finally, we performed 
accuracy assessments for each year in the 
analysis using the equations provided by 
Olofsson et al. (2013). The reference data 
for the accuracy assessment were created by 
overlaying the GIS outline of the burn scar 
provided by the Yellowstone Spatial Analysis 
Laboratory with 671 points created using a 
random point generator. Three hundred and 
fifty-two of these points fell within the burn 
scar, and 319 fell outside its boundary. These 
classes (burned or unburned) were assumed 
to be accurate and were used as the reference 
data. 

RESULTS

This discussion of our results begins with 
a qualitative visual comparison of the yearly 
weighted DI images. Context is provided by 
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Table 1: Estimates of the area burned along with user’s accuracy, producer’s accuracy, and 
overall accuracy with 95% confidence intervals.

User’s Accuracy Producer’s Accuracy
Year Burned Area Not Burned Burned Not Burned Burned Overall 

Accuracy
1988 561.83 ± 35.30 0.68 ± 0.05 0.92 ± 0.04 0.95 ± 0.02 0.59 ± 0.04 0.76 ± 0.03
1989 575.72 ± 37.33 0.63 ± 0.05 0.93 ± 0.04 0.96 ± 0.02 0.50 ± 0.03 0.71 ± 0.03
1990 597.48 ± 39.43 0.67 ± 0.05 0.86 ± 0.04 0.90 ± 0.03 0.56 ± 0.04 0.73 ± 0.03
1991 560.35 ± 39.28 0.60 ± 0.05 0.84 ± 0.05 0.90 ± 0.03 0.46 ± 0.03 0.67 ± 0.04
1992 565.30 ± 39.49 0.61 ± 0.05 0.81 ± 0.05 0.87 ± 0.03 0.49 ± 0.03 0.67 ± 0.04
1993 594.37 ± 36.37 0.68 ± 0.05 0.90 ± 0.04 0.93 ± 0.03 0.61 ± 0.04 0.76 ± 0.03
1994 579.66 ± 36.56 0.70 ± 0.05 0.89 ± 0.04 0.91 ± 0.03 0.64 ± 0.04 0.77 ± 0.03
1995 602.62 ± 40.35 0.64 ± 0.05 0.85 ± 0.05 0.90 ± 0.03 0.52 ± 0.03 0.71 ± 0.03
1996 601.35 ± 38.57 0.67 ± 0.05 0.85 ± 0.04 0.89 ± 0.03 0.61 ± 0.04 0.74 ± 0.03
1997 599.06 ± 39.43 0.67 ± 0.05 0.80 ± 0.05 0.82 ± 0.04 0.63 ± 0.04 0.72 ± 0.03
1998 596.13 ± 39.92 0.66 ± 0.05 0.79 ± 0.05 0.82 ± 0.03 0.62 ± 0.04 0.72 ± 0.04
1999 605.18 ± 41.62 0.62 ± 0.05 0.79 ± 0.05 0.86 ± 0.03 0.50 ± 0.03 0.68 ± 0.04
2000 570.60 ± 39.63 0.61 ± 0.05 0.78 ± 0.05 0.82 ± 0.04 0.56 ± 0.04 0.68 ± 0.04
2001 597.97 ± 41.71 0.65 ± 0.05 0.76 ± 0.05 0.82 ± 0.03 0.56 ± 0.04 0.69 ± 0.04
2002 571.20 ± 41.10 0.61 ± 0.05 0.77 ± 0.05 0.84 ± 0.03 0.50 ± 0.04 0.66 ± 0.04
2003 562.50 ± 41.13 0.64 ± 0.05 0.74 ± 0.05 0.79 ± 0.03 0.57 ± 0.04 0.68 ± 0.04
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referring to the published research of other 
scientists, mostly that of Dr. Monica G. 
Turner and her colleagues, whose research 
was based on extensive field work in the Yel-
lowstone 1988 burn area. This is followed 
by quantitative accuracy assessments of 
each year’s classification results and a corre-
sponding discussion. Modeling specific plant 
conditions or drawing conclusions about 
biological processes is beyond the scope of 
this study, which is designed only to assess 
the sensitivity of the weighted DI over time. 
An analysis based on more thorough ground 
reference data is the next step in this research 
program.

Figure 1a shows the unweighted DI im-
age for 1988, just after the fires were extin-
guished, while Figure 1b shows the weighted 
DIopt image calculated from the same image. 
In both of these images, lighter areas show 
locations which were more likely to have 
been burned, while darker areas were more 
likely to have not been burned. Notice in the 
unweighted image (Fig. 1a) that location 1 
(Hayden Valley) and location 2 (Pitchstone 
Plateau) were both very light, suggesting that 
these areas were burned, when in fact they 
were not. Hayden Valley is a grassland area 
whose vegetation was more spectrally similar 
to recovering burnt forest (possibly with a 
rapidly growing understory) than to undis-
turbed forest. Pitchstone Plateau is a rhyolite 
lava flow whose relatively sparse vegetation 
was also spectrally more similar to recovering 
burnt forest than to dense forest. The weighted 
DIopt image, Figure 1b, accurately displays 
these areas as unburned. We were careful to 
collect data from locations in the Hayden 
Valley and Pitchstone Plateau areas when 
deriving the weights to ensured that these 
areas were “trained” as unburned locations.  
Forest recovery was evident in the 1994 DI-
opt image (Figure 1c). In the northwest of 
the study site, near Madison (location 3), 
and along the Central Plateau (location 4) 
the 1994 image appeared darker (less dis-
turbed or more recovered) than it appeared 
in the 1988 image (Figure 1b). This was also 
true, to a lesser degree, around Grant Village 

(location 5). Turner et al. (2003) report that 
within a year of the fire, this area was cov-
ered with herbs, grasses, and shrubs. Sapling 
density of serotinous lodgepole pines (Pinus 
contorta) increased immediately after the fire 
(Turner et al. 2004), especially in older stands 
(Schoennagel et al. 2003). The percentage of 
Lodgepole pine saplings that reach mature 
height was higher in 1990 and was greater 
in severe-surface burns rather than in areas 
that experienced crown fires (Turner et al. 
1999). Also in 1990, aspen (Populus tremu-
loides) were identified in burned lodgepole 
pine forests (Turner et al. 1997). Fireweed 
(Epilobium angustifolium) flowered abun-
dantly in 1990 and peaked in 1991 when 
it formed thick patches of waist-high stems 
(Turner et al. 1997). 

Lightly burned areas returned to their 
pre-fire percent vegetative cover by 1991 and 
severely burned areas had recovered half of 
their percent cover by 1992, even though 
shrub cover was still reduced (Turner et al. 
1999). By 1993, percent cover of tree sap-
lings, primarily lodgepole pine, had reached 
10.0% in the northwest, less than 1.0% in 
the southwest, and less than 0.1% in the 
southeast near Yellowstone Lake (Turner et 
al. 1997). Percent forb cover had increased 
in the southwest and southeast but not in the 
northwest while shrub cover was still uni-
formly low across all burned areas (Turner 
et al. 1997). Canada thistle (Cirsium arvense) 
was increasing in 1993 when Turner et al. 
(1997) finished collecting field data, and it 
likely continued to increase for some time. 
All of this new, post-fire growth is evident in 
the 1994 weighted DI image.

Eleven years after the fire, in 1999 (Fig-
ure 1d), approximately 66% of the burned 
areas had stand densities of less than 5000 
saplings per ha, but 25% of the burned area 
had densities greater than 10,000 saplings 
per ha and about 7% had densities exceeding 
50,000 saplings per ha (Turner et al. 2004). 
Most of the high-density stands were located 
in the north of the study site, near the Cen-
tral Plateau (location 4) while most of the 
low-density stands were south of Yellowstone 



102

Matthew Klotzbach and Jonathan Thayn

Figure 1: Image a shows the DI of the 1988 YNP study area. Images b, c, d, and e portray 
the DIopt from 1988, 1994, 1999, and 2003, respectively; note that a number of brighter 
patches show up in e, representing new forest fires which occurred between 2001-2003. 
Image f contrasts the 1988 and 2003 optimized images: areas which displayed some recovery 
by 2003 are displayed in white; patches in dark gray indicate areas that were more burnt/
disturbed in 2003 than in 1988; light gray patches did not change over time.
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Lake. The low-density of lodgepole stands 
south of Yellowstone Lake was due to the 
greater fire severity in that area. The more 
rapid recovery in the north of Yellowstone 
compared to the south is evident in the 1999 
DIopt image.

By 2003, many of the lighter areas in 
the DIopt image had darkened and some 
had disappeared, indicating significant re-
covery of burned areas since 1988 (Figure 
1e). The Central Plateau region (location 
4) and areas northward showed the most 
dramatic improvement. This was consistent 
with trends outlined in the literature cited 
earlier. Recovery south of Yellowstone Lake 
occurred much more slowly. Based on field 
data collected in 1993, Turner et al. (1997) 
concluded that post-fire reestablishment in 
the Yellowstone Lake area was questionable, 
with fewer than 10 seedlings observed per ha 
in the area. Seedling viability of the lodge-
pole pine species is generally less than five 
years, while it is less than three years for the 
Engelmann spruce and less than 1 year for 
the subalpine fir. It is possible, then, that the 
window for reestablishment of these species 
has been missed in the south and that some 
of the area south of Yellowstone Lake (which 
remained lighter in our 2003 DIopt image) 
may not return to its pre-fire forest condi-
tion but become a grasslands region similar 

to Hayden Valley (Turner et al. 1997).
Several more recent fires appeared as 

lighter spots in the 2003 DIopt image (Fig-
ure 1e), such as the Sulfur and Arthur Fires 
(locations 6 and 7) which both occurred in 
2001. The Broad and East Fires (locations 8 
and 9) occurred in 2003, as did the fire on 
Frank Island in Yellowstone Lake. The more 
recent burn scars appeared in the temporal 
composite image as well (Figure 1f ). In this 
image, areas whose weighted DI was greater 
in 1988, indicating recovery, are displayed in 
white. Areas with lower weighted DI values 
in 2003 are showing in dark gray – these are 
areas that are more disturbed in 2003 than 
they were in 1988, or locations of newer fires. 
Areas displayed in light gray are those whose 
weighted DI is essentially the same in 2003 
as they were in 1988. 

The weights used to create the DIopt imag-
es varied only slightly over time (Fig. 2). The 
means of each TCT component’s weights, 
with their standard deviation in parentheses, 
were: brightness, -5.77 (2.67); greenness, 
0.67 (2.56); and wetness, 8.78 (1.46). Since 
the TCT components were normalized as 
z-scores, these weights are relative to one 
another, i.e., the brightness component 
was about 8.5 times more important than 
greenness, and wetness was about 1.5 times 
more important than brightness. Wetness, 

Improved Monitoring of Forest Disturbance and Succession using an Optimized Satellite Image Index

Figure 2: The weights for each TCT component for each year of the 16-year study period. 
The importance of Wetness was positive, suggesting that burned areas did not recover their 
pre-fire ability to retain moisture. Brightness was negative and decreases in importance over 
time. Greenness was the least important and gradually declines as succession progresses. 
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then, was the most important TCT com-
ponent for distinguishing between burned 
and unburned forest canopy. Brightness was 
also important while greenness was the least 
important component. 

The wetness components’ weights were 
positive, suggesting that burned areas were 
drier than unburned areas, although this was 
not verified with field data. It seems that over 
the course of this 16-year time-series, the 
burned areas did not recover their pre-fire 
ability to retain moisture. It is likely that 
some patches of bare soil and ash persist on 
the landscape, which would make the pixels 
that contain them appear spectrally to be 
drier than pixels that are covered with dense 
vegetation. 

Comparisons of brightness TCT compo-
nent values for burned areas were slightly 
larger than those of unburned forest. Ac-
cordingly, the weights for the brightness 
component were negative. This was contrary 
to the expectation outlined by Healey et al. 
(2005), possibly because the burned areas 
quickly filled with fast growing grasses and 
forbs (Turner et al. 1997) and so appeared 
to be covered with healthy vegetation. These 
plants absorb sunlight to power photosyn-
thesis, thereby reducing reflectivity. How-
ever, it was unknown why the reflectivity 
of these areas would be lower than that of 
the unburned forest, although differences 
in species compositions could be partly 
responsible.

Greenness was the least important com-
ponent for discerning between burned and 
unburned forest, likely because burned areas 
were quickly filled with perennial herbs, 
grasses, and shrubs which “flowered profuse-
ly” (Turner et al. 2003 p. 353). The positive 
mean weight for greenness suggests that the 
unburned sites were more photosynthetically 
active than the burned sites, but only slight-
ly. Notice that the importance of greenness 
decreased with succession (its weights trend 
toward zero over time in Figure 2). The trend 
line for greenness’ weights reached zero be-
tween 2000 and 2001, suggesting that for 
this fire, and for this satellite-based measure 

of photosynthetic activity, the burned areas 
had recovered their photosynthetic produc-
tivity by that time. 

The size of the area burned, including 
95% confidence intervals, was estimated for 
each year of the study using the equations of 
Olofsson et al. (2013). Naturally, the extent 
of the disturbed area would not change, but 
the detectable area, or our confidence in its 
detection, might decrease if the DI loses 
sensitivity to the disturbance as recovery 
progresses. The area of the detected burn scar 
did not change statistically from year to year 
as recovery progressed (F = 0.386, p = 0.544) 
– its mean was 583.83 ± 39.20 thousand 
acres. Even after 15 years of succession, the 
full extent of the burn scar was detectable 
using the weighted DI. Each year’s DI image 
was created using weights that accentuated 
the difference between the unburned and the 
burned forest for each years’ condition. The 
weights changed to emphasize areas that had 
been burned, so the DIopt highlighted the 
burned areas despite subsequent recovery. 
However, the size of the 95% confidence 
intervals of the area estimates increased from 
35.30 thousand acres the year after the fire 
to 41.13 thousand acres 15 years later, and 
this increase was statically significant (F = 
17.07, p = 0.001). While our estimates of 
the burned area did not change over time, 
our confidence in those estimates slowly 
eroded. 

The user’s accuracy is an estimate of the 
probability that a pixel classified as burned 
was truly burned. A low user’s accuracy for 
burned pixels would suggest a high com-
mission error rate, i.e., that many unburned 
pixels were incorrectly classified as burned. 
The producer’s accuracy is an estimate of 
the probability that a burned location in the 
field was correctly classified. Low producer’s 
accuracy for burned pixels would suggest 
that many burned areas escaped detection, 
or a high omission error rate. Our discussion 
of classification accuracy will focus only on 
the burned class, since that is the focus of 
this work and the accuracy of the unburned 
class is simply the reverse of the burned class.

Matthew Klotzbach and Jonathan Thayn
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The producer’s accuracies for burned sites 
ranged from 0.46 to 0.64, with a mean of 
0.56 ± 0.03, suggesting that some burned 
locations escaped detection. These were 
likely slightly burned locations that, from a 
spectral reflectance perspective, have more in 
common with healthy forest than disturbed 
forest. It is quite possible that the understory 
of these slightly burned areas grew quickly. 
A verdant understory would be more spec-
trally similar to healthy forest than to burned 
forest and might confuse the classification 
algorithm. Unfortunately, we do not have 
access to field data from 1989 that might 
verify this. The producer’s accuracy of burned 
areas did not vary predictably from year to 
year (F = 0.13, p = 0.722), so any pixels that 
were only slightly disturbed (thus escaping 
detection) in 1989 remained undetectable 
through 2003. 

Users accuracy for burned locations de-
creased from 0.92 in 1989 to 0.74 in 2003, 
so we can be very confident that any pixel 
classified as burned represents a location that 
was actually burned. Very few unburned sites 
were incorrectly classified as burned. How-
ever, the decrease in the users accuracy of the 
burned class was statistically significant (F = 
46.91, p < 0.000), suggesting that as recovery 
progressed, burned locations began to ap-
pear spectrally more like unburned locations, 
and the classification began to confuse the 
two classes. This happened even though the 
DIopt images had been fitted to each year’s 
condition using the weighting coefficients. 

The overall accuracy of the classification, 
including both the burned and the unburned 
classes, started at 0.76 ± 0.03 and declined to 
0.68 ± 0.04 after 15 years of recovery. This 
decrease was statistically significant (F = 4.26, 
p = 0.058). Most of the overall classification 
errors were the slightly disturbed sites that 
escaped detection, as mentioned above. The 
large majority of pixels that were classified 
as burned were correctly identified. Like all 
methods for detecting recovering disturbance 
sites, however, the DIopt becomes increas-
ingly unable to identify burned pixels as 
recovery progresses.

DISCUSSION

The first question this project was designed 
to address was whether the weighting coeffi-
cients of the DI help it to remain sensitive to 
disturbances as recovery progresses, and our 
results suggest that it does. Classifications of 
the weighted DI were able to detect the full 
extent of the 1988 fires, even after 15 years 
of succession and recovery. This was even true 
in areas that were less severely burned. The 
detected area of the burn scar was statisti-
cally unchanged from year to year; however, 
95% confidence intervals of the detected area 
increased over time, suggesting that our con-
fidence in the weighted DI decreased with 
recovery. As recovering forest regains some 
of its initial condition, the burn scar will be 
more and more difficult to detect, and while 
statistically weighting the DI increases its 
sensitivity, the burn scar will eventually be 
erased from the landscape, at least spectrally. 
Until then, weighting the DI seems to in-
crease the likelihood that researchers will be 
able to successfully map past disturbances.

The second question addressed by this 
project is whether weighting the DI reduces 
confusion between disturbed and naturally 
less productive locations. Again, our results 
suggest that it does. This is possibly the most 
useful aspect of the weighting the DI. It can 
fit the index to specific disturbances of in-
terest while dampening or weakening the 
effects of other differences that are not as im-
portant to the researcher. This possibility was 
suggested by Healey et al. (2005) but was 
not demonstrated in that paper. In the pres-
ent paper, we demonstrate that some of the 
less verdant regions of Yellowstone National 
Park, like the Hayden Valley grasslands and 
the Pitchstone Plateau, were initially classi-
fied as burned forest. The classification based 
on the weighted DI was able to recognize 
that they were not burned locations, but 
areas that were more spectrally similar to 
burned forests than to unburned forest. This 
property of the weighted DI makes it appeal-
ing for studies of disturbances in multiple 
landuse study sites.
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The advantages of the weighted DI come 
with a cost. First, the researcher must be 
able to identify locations of disturbed and 
undisturbed forest canopy. If this is not pos-
sible, e.g., if the researcher is trying to locate 
previously unknown disturbances, than the 
unweighted DI is the best option. Also, there 
is a considerable increase in processing time, 
especially when deriving the weights.

As we experimented with deriving the 
weights, we realized that the optimization 
solution was not unimodal, i.e., there were 
multiple potential solutions. A maximizing 
Nelder-Mead optimization moves iteratively 
to larger values until movement in any direc-
tion decreases the statistic. In this way, find-
ing the largest statistic, indicative of the best 
solution, is like climbing a mountain. If every 
step you take is uphill, you will eventually 
reach the top. From there, every direction is 
downhill and the optimization stops. When 
the solution is not unimodal, it is as if there 
were multiple mountain peaks in the same 
area. The problem is that the optimization 
will climb to the top of a mountain and stop, 
but there may be a taller peak, or a better 
solution, nearby (Nelder and Mean 1965). In 
a non unimodal scenario, the Nelder-Mead 
optimization may stop at a local maximum 
and ignore the global maximum that repre-
sents a better solution.

The solution to this problem is to care-
fully start the optimization on the foothills 
of the tallest mountain and not on those of 
one of the shorter peaks. From our initial 
work we were confident that the optimum 
weights would be greater than -10 and less 
than 10, so we found the chi-statistic for ev-
ery combination of integer weights within 
that range. The combination of weights with 
the largest chi-statistic was then used as the 
starting point in the Nelder-Mead optimiza-
tion. The disadvantage of this approach is 
increased computation time and complexity. 
With 21 possible integer weights between -10 
and 10 for each of three weights, over 9,000 
Kruskal-Wallis tests were needed to find the 
starting point for the optimization. A more 
sophisticated optimization technique, one 

designed for multi-modal solutions, could 
have been more efficient. Despite this, the 
Nelder-Mead optimization was very useful 
for weighting the DIopt, which proved very 
useful for clearly distinguishing disturbed 
areas and areas recovering from disturbance.
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