The Elderly Return-Migration in the United States: Role of Place Attributes and Individual Characteristics in Destination Choice

Rshood M. Khraif
Professor

Department of Geography
King Saud University
Riyadh, Saudi Arabia

ABSTRACT

The return migration of the aged is analyzed using a logit model that integrates selected place attributes (i.e., climate, living costs, and health services), distance to the state of birth, and several personal characteristics (i.e., gender, marital status, age, and income). A five-percent Public Use Microdata sample of the 1980 Census of the United States of America is utilized in this paper.

Results indicate that a recently retired elderly person is likely to select his/her place (state) of birth if it has a pleasant climate and low living costs. Also, the less wealthy and single people are more likely to select their places of birth than other migrants. In general, it has been found that place characteristics are influential in the decisions of return migration of the recently retired elderly.

KEY WORDS: migration, return migration, logit model, destination choice, elderly population.

INTRODUCTION

The change in spatial distribution of the elderly population has several demographic, social and economic implications (Speare and Meyer, 1988). As one of the mechanisms of population change, the aged return migration is also an important component of the overall population movement of the elderly (Longino, 1979; Bryant and El-Attar, 1984). Understanding return migration is rewarding for long-term planning of spatial distribution of services to meet the needs of older adults (Serow, 1978; Rowles, 1986), especially since elderly return migrants are negatively selected in terms of basic socioeconomic characteristics in the sense that they fall disproportionately in the assistance-seeking category (Longino, 1979; Serow and Charity, 1988; Litwak and Longino, 1987). Furthermore, an understanding of the return migration of the elderly may help explain the process of migration of the elderly in general and destination choice in particular. This is especially so, since their state of birth is one element of the set of destination alternatives that are considered and evaluated by the inter-
state elderly migrants. Despite the fact that return migration is not as significant as it was previously believed, it still comprises about 20 percent of all interstate older migrants in the United States (Serow, 1978). In addition, return migration moves are relatively greater among the elderly population than similar interstate moves of the population as a whole (Serow, 1978).

In general, correlates of destination choice are not satisfactorily understood due to the lack of appropriate microdata and overall modeling difficulties (Roseman, 1983). Knowledge about both the factors that seem to influence the decisions of whether or not to retire in the state of birth in general, and the role of the geographic factors in such decisions in particular, are either lacking or are fragmented. Some studies focus solely on individual characteristics on one hand (e.g. Longino, 1979; Speare and Meyer, 1988). Other studies emphasize macro-level determinants (e.g. Serow and Charity, 1988; Fournier et al., 1988b, for general migration of the aged).

The purpose of this paper is to examine two basic questions in a more appropriate modelling framework. To what extent do place characteristics (i.e. ecological variables), especially location-specific amenities and living costs, affect the selection of the state of birth as a retirement destination? Secondly, what is the role of personal/familial traits (i.e. personal factors) in such decision-making process? In other words, this paper explores the role of place attributes such as living cost, health services, and climate and some migrants’ socioeconomic characteristics in selecting the natal states as destinations of recently retired elderly.

An advantage of focusing on the recently retired elderly is that it allows for close examination of their migratory behavior as they enter a new life-cycle stage and consequently receive relatively fixed incomes. In addition, “in early years of retirement, . . . the rates of interstate migration attain a level considerably above the years preceding retirement” Chevan and Fischer (1979, p. 1378; Henretta, 1986). Of special interest, however, is the examination of the effect of amenities and living costs on the decision to return to natal states soon after retirement. In brief, it is intended to explain the determinants of the selection of the state of birth as a destination alternative by personal- and place-related variables, by applying the logit model to migration data of the U.S. Public Use Sample.

BRIEF REVIEW OF THE LITERATURE

“In spite of its importance, surprisingly few formal analyses exist concerning the mobility of the elderly” (Graves and Knapp, 1988, p. 1). Furthermore, return migration of the aged has only been occasionally mentioned and briefly described in most theoretical descriptions and conceptualizations. According to Roseman’s (1983) conceptualization of destination selection, place characteristics weakly influence return migration. The peculiar perception of each migrant about his/her natal state, as being the place where kin and most relatives are located, is a very important factor in the decision of return migration. In the same vein, Lee (1980, p. 134) points out that many elderly migrated towards urban and industrial areas from less developed parts of the country, for which they have an idealized memory of being free of crime, traffic, and other problems of industrial and urban stress. Heaton (1983), on the other hand, describes return migration as being similar to amenity migration, except for the pronounced effect of personal contacts involved in the selection of destination.

Only few studies have dealt directly with elderly return migration, namely Serow (1978), Longino (1979), and Serow and Charity (1988). Whereas, Serow (1978) describes the volume and trends of return migration among the elderly population over the past two decades, Longino (1979) provides useful descriptions and informative classifications of states with high and low rates of return migration.

Both Serow (1978) and Longino (1979) report that older return migrants tend to be attracted to generally popular destination states for the aged. Both of these two researchers also conjecture that re-
turn migration among the aged is somewhat influenced by climate, coastal location, and cost of living.

However, describing state-to-state variations in the rates of return migration of older adults, Longino (1979, p. 744) concludes that

"states that disproportionately attract both types [return and non-return migrants], except for Arizona and Nevada are all coastal and not necessarily in the southern one-half of the U.S. Those strongly attracting only return migrants are clustered in the southeastern quadrant of the nation and more closely resemble a sunbelt. Those that strongly attract neither type of migrant cut a broad swath across the nation under Canada and above the Mason and Dixon line from Atlantic to the Rocky Mountains, with a sprinkling of exceptions."

Utilizing discriminant analysis, Longino (1979) also differentiated between return and non-return migrants on the basis of socioeconomic and demographic characteristics. In brief, he found return migrants to be negatively selected in most basic socioeconomic characteristics. For instance, they tended to be less educated and had lower incomes than non-return migrants. They were also more likely to be black, living with siblings, and less likely to be married.

Recently, Serow and Charity (1988) provide a macro-level investigation of return migration of the elderly. They found that the determinants of the return migration and total in-migration of older people are generally similar but not identical. Among numerous variables that were included in their analysis (i.e. cost of living, climate, unemployment, hospital beds, income growth, and median age of the state), cost of living, climate, and median age were found significant.

CONCEPTUALIZATION AND RESEARCH HYPOTHESES

Return migrants are very heterogeneous collection of people who undertake different types of mobility. Some may choose their states of birth as being less expensive alternatives for retirement (Rowles, 1986; Wiseman and Roseman, 1979) as well as places where relatives and kin may reside (Roseman, 1983). Others however may move back to their states of birth mainly because those states have attractive amenities and/or acceptable living costs rather than because they are merely the states of birth. The latter group would, therefore, closely resemble migrants moving to amenity-rich areas. Therefore, "as with any individual, mobility behavior of an elderly person depends on traits specific to him or her as well as on traits specific to alternative locations" (Graves and Knapp, 1988, p. 2).

In this paper, the selection of the place of birth as the retirement destination is analyzed as a part of, at least, three sequential decisions (Fig. 1). First, upon retirement, there is no longer need to be close to the work place (Litwak and Longino, 1987), and consequently, elderly are conceptualized to evaluate their residential situation and, often, make some adjustments. Their satisfaction with the current place of residence is often related to (or is a function of) cost of living, the availability of local amenities, the location of relatives and friends, and a host of other factors. A retiree can maximize his satisfaction level (or place utility) by relocating from one place to another. Since his/her income is relatively fixed across space, he/she can maximize his/her satisfaction level by being able to consume location-specific amenities (e.g. pleasant climates) or being able to upwardly alter the real value of his/her income and consequently consume new goods and services (Khraif, 1989; Grave and Knapp, 1988).

However, once the decision to move is made, a search for a destination is embarked upon (for discussions of migration decision-making see Brown and Moore, 1971; Moss, 1979; Odland and Ellis, 1987; Kanaroglou et al., 1986; Liaw, 1990, Khraif, 1989). Since most people have a relatively good knowledge about their place of birth and often have emotional ties to it (Gober and Zonn, 1983), they may first consider their place of birth
and determine whether their post-retirement needs and desires can be satisfied by relocating to these places. When they decide that these places are not compatible with their needs and desires, they then evaluate other available destinations (see Fotheringham, 1986 for information on two-stage destination choice). In this investigation, the second level of the decision hierarchy is analyzed.

Research Hypotheses

In an effort to extend our knowledge about both destination choice in general and return migration in particular, several hypotheses are advanced from previous research and examined within the aforementioned framework. They are as follows:

1. The more attractive and suitable his/her place (state) of birth is in terms of location-specific amenities, the more likely that it is being selected as a retirement destination by the recently retired elderly migrant.

2. The lower the living costs at the state of birth of the recently retired elderly inter-state migrants are, the more likely that these states are being selected as retirement destinations.

3. The propensity to select the place of birth for retirement increases with higher level of health services.

4. The more accessible the area of birth in terms of distance, the more likely that it will be selected as a retirement destination by its native migrants.

5. The selection of the place (state) of birth to retire to is more likely among migrants with limited financial resources compared to the relatively wealthy ones.

6. The unmarried, female, and older elderly migrants are more likely to choose to retire in their natal state than to go to other places because they have relatively good knowledge about these places and, perhaps, wish to be in close proximity to friends and relatives.
METHODOLOGY

The Data

This research uses the 5-percent Public Use Microdata Sample (PUMS) of the 1980 census of Population and Housing. The investigation is concerned only with recently retired interstate migrants; who were in the labor force in 1975, 55 years old or over, and whose states of birth were different from their states of residence in 1975. Based upon these conditions, the data subset that are utilized for this investigation contains 6,983 interstate migrants.

Information for areal characteristics of places of birth were collected from the Statistical Abstract of the United States for the years 1974, 1975, 1976, and 1977. The information for the index of the state's living costs were obtained from Fournier et al. (1988a).

It is worthy to note the data set does not list past residences of the individuals. This makes the definition of returned migrants less than desirable in terms of accuracy (see Serow and Charity, 1988, for details on this issue). For example an individual might have been in more than one place before moving back to their place of birth in 1975. Also, a person might have spent only a few years in their places of birth but most of their life in other places which he/she might want to return to after retirement. Such information cannot be detected from the data at hand. However, the major advantage of PUMs is its sheer size and comprehensive content. It is nevertheless difficult to find a data-set that permits rigorous examination of the hypotheses advanced here, especially with the methodology used in this paper. Compared with what is available, it is one of the most appropriate and widely used in migration research in general.

The Method of Analysis

The role of both place and individual characteristics in the process of deciding on whether or not the elderly interstate migrants would retire in the area of birth is examined in a discrete choice modeling framework that is based on the random utility theory.

Thus, the probability \(P(r) \) that a migrant will select his/her state of birth as a retirement destination, given that he/she is a lifetime migrant and decided to move between 1975 and 1980 is represented by:

\[
P(i) = \frac{\exp(\beta_0 + \sum_k \beta_k X_{ik} + \sum_j \beta_j X_{ij})}{1 + \exp(\beta_0 + \sum_k \beta_k X_{ik} + \sum_j \beta_j X_{ij})}
\]

where, \(X_{ik} \) and \(X_{ij} \) represent the values for the \(k \)th personal characteristic of the \(i \)th lifetime elderly migrant and the \(j \)th place attribute of his/her place (state) of birth (including the distance between the place of residence in 1975 and the state of birth) respectively; \(\beta_k \) and \(\beta_j \) are parameters to be estimated from the data.

It is noteworthy that the measure of return migration constructed above, may be more appropriate than those used in previous studies. For instance, in Serow (1978) return migration measure is computed as the number of return migrants to a state, divided by the number of people born in that state but residing elsewhere at the beginning of the 1965–70 period. On the other hand, Longino (1979) uses two different measures. The first is called "return migration quotient" and constructed as "the number of return migrants per hundred of all interstate migrants living outside their state of birth in 1965." The second measure is the number of return migrants per hundred immigrants of a state.

In order to estimate model (1), the individual cases are grouped in a multi-way contingency table that is dimensioned by climate (four levels), an index of living costs (three levels), physicians per 100,000 people (two levels), distance (four bands), age, race, and marital status of migrants (two levels each), and income (three levels). Cells that contain structural zeros are eliminated and a 0.5 is added to all cells that contain sampling
zeros. However, the measurements and operational forms of these factors are obtained from Khraif (1989) and presented in Table 1.

Estimating model [1] for grouped data can be done by using Theil’s (1970) generalized least square or a similar method. In this investigation, Interactive Weighted Least Square which is embedded in the Generalized Linear Interactive Modeling system (GLIM) is used.

It is worthy to note that GLIM program uses an estimation procedure, known as iterative weighted least squares, developed from Finny’s (1952) method of deriving maximum likelihood estimates for probit analysis. As described by O’Brien (1983), iterative weighted least squares method is a refinement of both generalized least squares (GLS) and maximum likelihood estimation (MLE) procedures.

However, it is important to notice that equation [1], becomes a dichotomous linear logit model. That is, the log of the odds of returning to the natal state, given that the individual has made the decision to move between 1975 and 1980, can be represented as:

$$\log(P_i(\tau) / 1 - P_i(\tau)) = \beta_0 + \sum_{k} \beta_k X_{ik} + \sum_{j} \beta_j X_{ij} \quad [2]$$

Table 1

<table>
<thead>
<tr>
<th>Variables</th>
<th>Measurements</th>
<th>Abbrev.</th>
<th>Levels (Categories)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Annual average of heating degree days for the last 30 years.</td>
<td>COLD</td>
<td>=1, if, COLD <= 3462</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=2, if, 3462 < COLD <= 4956</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=3, if, 4956 < COLD <= 6113</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=4, if, COLD > 6113</td>
</tr>
<tr>
<td>Living costs</td>
<td>Index of living costs obtained from Fournier et al. (1988).</td>
<td>COSTL</td>
<td>=1, if, COSTL <= 96.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=2, if, 96.7 < COSTL <= 101.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=3, if, COSTL > 101.3</td>
</tr>
<tr>
<td>Health services</td>
<td>Physicians per 100,000 population.</td>
<td>PHYS</td>
<td>=1, if, PHYS <= 140</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=2, if, phys > 140</td>
</tr>
<tr>
<td>Distance</td>
<td>Distance between State’s population centroids (miles).</td>
<td>DIS</td>
<td>=1, if, DIS <= 500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=2, if, 500 < DIS <= 1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=3, if, 1000 < DIS <= 1500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=4, if, DIS > 1500</td>
</tr>
<tr>
<td>Income</td>
<td>Unearned income.</td>
<td>INC</td>
<td>=1, if, INC <= 3485</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=2, if, 3485 < INC <= 8515</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=3, if, INC > 8515</td>
</tr>
<tr>
<td>Age</td>
<td>years.</td>
<td>AGE</td>
<td>=1, if, AGE <= 64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=2, if, AGE > 64</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td>GENDER</td>
<td>=1, if, Male</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=2, if, Female</td>
</tr>
<tr>
<td>Marital Status</td>
<td></td>
<td>MS</td>
<td>=1, if, Married</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=2, if, unmarried</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td>RACE</td>
<td>=1, if, White</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=2, if, Nonwhite</td>
</tr>
</tbody>
</table>
TABLE 2

The Determinants of the Selection of the State of Birth as Retirement Destination: Estimates and Their Asymptotic T-Ratios

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>Estimate</th>
<th>T-Ratio*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CONSTANT</td>
<td>-0.5133</td>
</tr>
<tr>
<td>2</td>
<td>COSTL(2)</td>
<td>-0.1305</td>
</tr>
<tr>
<td>3</td>
<td>COSTL(3)</td>
<td>-0.2263</td>
</tr>
<tr>
<td>4</td>
<td>AGE(2)</td>
<td>0.03190</td>
</tr>
<tr>
<td>5</td>
<td>GENDER(2)</td>
<td>0.09045</td>
</tr>
<tr>
<td>6</td>
<td>DIS(2)</td>
<td>-0.04363</td>
</tr>
<tr>
<td>7</td>
<td>DIS(3)</td>
<td>0.02991</td>
</tr>
<tr>
<td>8</td>
<td>DIS(4)</td>
<td>0.03754</td>
</tr>
<tr>
<td>9</td>
<td>RACE(2)</td>
<td>0.2915</td>
</tr>
<tr>
<td>10</td>
<td>PHYS(2)</td>
<td>-0.04427</td>
</tr>
<tr>
<td>11</td>
<td>COLDNESS(2)</td>
<td>-0.2721</td>
</tr>
<tr>
<td>12</td>
<td>COLDNESS(3)</td>
<td>-0.5412</td>
</tr>
<tr>
<td>13</td>
<td>COLDNESS(4)</td>
<td>-0.6269</td>
</tr>
<tr>
<td>14</td>
<td>INC(2)</td>
<td>0.007311</td>
</tr>
<tr>
<td>15</td>
<td>INC(3)</td>
<td>-0.1740</td>
</tr>
<tr>
<td>16</td>
<td>MS(2)</td>
<td>0.4704</td>
</tr>
</tbody>
</table>

*According to Hanushek and Jackson (1977:193), the standard error of estimated coefficient has to be scaled by the square root of the standard error of estimate (referred to as the scale parameter, in GLIM notations). In order to correct for this and calculate the T-Ratios when using GLIM program, the following program can be stored as a user macro and recalled as needed:

$DEL MATX TR
$EXT %VC %PE
$VAR %PL MATX TR
$CAL MATX = %CU (1): MATX = MATX * (MATX + 1) / 2
:TR = %VC (MATX): TR = %PE/((TR ** 0.5)/(%SC ** 0.5))
$PRI; 'T RATIOS FOR WEIGHTED METHOD'

Where, \(P_i(r) \) is operationally replaced by the proportion of migrants in cell \(kj \) who select to retire in their natal communities, \(1 - P_i(r) \) is replaced by the proportion of migrants in that particular cell who select not to return to their states of birth. As indicated earlier, each cell represents a subgroup, defined on the basis of the cross-classification of the categorical explanatory variables. To adjust for heteroskedasticity, Model [2] is weighed by \(W_{ijk} \) that is commonly used in estimating logit model for grouped data (Theil, 1970; Wrigley, 1985). For the sake of simplicity, assuming we have a three-way table that is dimensioned by categorical variables \(i, j, \) and \(k \), \(W_{ijk} \) takes the following form:

\[
W_{ijk} = n_{ijk} \cdot f_{ijk} \cdot (1 - f_{ijk}) \quad [3]
\]

where \(n_{ijk} \) is the total frequency or number of migrants in cell \(ijk \); \(f_{ijk} \) is the proportion of migrants in cell \(ijk \) who chose to return to their states of birth; \(1 - f_{ijk} \) is the proportion of migrants who chose to go to other destinations.

ANALYSIS AND RESEARCH FINDINGS

Determinants of Selection of the State of Birth:

Most of the variables included in the logit model are statistically significant. With the exception of distance and health services, all parameter estimates have expected signs (Table 2). However, all significant variables have a hypothesized direction of effect on the decision of whether or not to return to their natal states.
According to the estimated model, both location-specific amenities and living costs are very important factors in the elderly destination choice. The climate of the place of birth also appears to affect the decision of destination selection. The colder the climate of one's place of birth is, the less likely that he/she will return to it after retirement. The values of the asymptotic t-ratios (−4.164, −7.28, −7.53) are statistically significant at well beyond the 0.05 level. Living costs are also important in the decision of whether or not to spend retirement years in the place of birth. The higher the living costs at the states of birth, the less likely are the recently retired individuals would return to those locations. The associated t-ratios for places with moderate and high living costs are −1.94 and −3.09 respectively. The estimated coefficients for the distance between the pre-retirement place of residence in 1975 and the state of birth are statistically insignificant, meaning that distance is not an important factor in the decision of whether or not to spend post-retirement years in the place of birth. Similarly, the level of health services are statistically insignificant in the estimated model.

With respect to personal characteristics, it can be seen that the higher the income that individuals have, the less likely that they would choose their natal states as their retirement destinations. While middle income migrants are not statistically different from individuals with low level of income, upper income migrants are statistically different from people with low incomes in terms of their propensity to return to their states of birth.

In addition, being single rather than married significantly increases the log odds of an elderly to choose his/her state of birth (t-ratio = 8.185). This may be interpreted by the notion that the unmarried elderly (i.e., single, divorced, and widowed) may wish to move to familiar places and/or closer to relatives and friends. Racial differences in the likelihood of returning to natal states seem to exist. Nonwhite migrants are more likely to retire in their natal communities than white migrants. The t-ratio (3.86) for the estimated coefficient is significant at well beyond the 0.05 level. This may reflect the return of Afro-Americans to their places of birth in southern states after spending their working life in some metropolitan areas in the north and northeast United States.

The estimated parameter for gender is close to being significant at the 0.05 level. The sign of the estimated coefficient indicates that being a female increases the odds of returning to the place of birth after retirement. This may reflect the return of widows to familiar places of birth which may still have some friends and relatives.

Age is statistically insignificant. This may, however, be explained by the fact that this investigation deals only with recently retired elderly rather than the broad spectrum of all elderly. This variable was introduced into the analysis to examine the behavior of early retirees. Thus, it would be concluded that there is no distinct behavior for early retirees in term of whether or not they go back to their state of birth after retirement.

In sum, according to the estimated model, climate and living costs seem to effect the return migration among recently retired elderly. Thus, the first and second hypothesis are fully confirmed. Conversely, the level of health services and distance are found not to influence the decision of returning to natal states, and therefore, the third and fourth hypothesis are not confirmed. With respect to individual characteristics, the fifth and sixth hypotheses are partially supported by the research findings. That is, marital status is significant variable while age and gender are not. The fourth hypothesis is not confirmed since all concomitant coefficient estimates are not significant at the 0.05 level.

However, the overall performance of the estimated logit model is not very high. The contribution of all variables to the model fit, which is the difference between the null (deviance = 1455.7) and the current (deviance = 1152.8) models, amounted to 302.9 deviance points. This difference (sometimes referred to as the conditional deviance) is assumed to have (or follows) a X^2-distribution and it is
statistically significant at the 0.05 level. Thus, the model explains a relatively small proportion of the variation in the response variable.

CONCLUSION AND AND RESEARCH IMPLICATIONS

This investigation is a modelling effort to further our understanding of the factors associated with the selection of places of birth as retirement destinations. It analyzed this aspect of destination choice in a model that integrated both location and individual data in a way that has not been yet done for the elderly return migration. Moreover, integrating personal and place characteristics is generally rare in migration research. Thus, the empirical model estimated in this paper is appealing in terms of the specification and the results that provide a better alternative to both the aggregate (macro) models and the individual (mover-stayer) type models. However, according to the estimated model, living costs, location-specific amenities (pleasant climates in our case) are important factors in choosing to return to the place of birth after one's retirement. The less wealthy, and the unmarried are more likely to select their places of birth as their retirement destination than their counterparts; the wealthy and the married migrants. This may indicate the existence of kinship mobility even among recently retired elderly.

In conclusion, the constructed measure of return migration as the probability of returning to the place of birth given that a person is both a recent retiree and an interstate migrant, and the analytical procedure employed, are perhaps more appropriate for analyzing return migration. While ties to the place of birth may be important in the decision of whether or not to retire in that place (as suggested by this study and others such as Longino, 1979; Litwak and Longino, 1987), the availability of location-specific amenities (pleasant climate) and the level of living cost, are important in such decisions. In addition, individual factors such as income, marital status, and race are significant in the model of destination choice. Overall, both individual and place characteristics are critically important in understanding return migration of the elderly and should be integrated together in the explanation of migration.

Although this study is concerned with the elderly population, the hypotheses developed here as well as the analytical procedures can be extended and tested in the context of the return migration of the general population. To this end, this investigation has provided insights as to why recently retired elderly people select the state in which they were born as their retirement destination.

FUTURE DIRECTIONS

A logical direction for future research is to model the return migration decision-making in a framework that allows for exploring the nature and components of decisions involved. In addition, as it was suggested by Moss (1979) and Graves and Knapp (1988) and empirically examined by Khr aif (1989) for the migration and destination choice of the elderly, it is worthy to interface individual traits with place characteristics in order to examine interesting and useful hypotheses regarding return migration of the elderly. It may also be interesting to investigate the interrelationship between the decision to retire and the decision to migrate.

ACKNOWLEDGMENTS

The author wishes to deeply thank Prof. John Odland (Indiana University) for providing the data used in this paper. He also wishes to thank Prof. F. AlJammal (King Saud University) for his comments on earlier draft of this paper.

REFERENCES

