The Geographical Bulletin

NOVEMBER

2003

Vol. 45

No. 2

GAMMA THETA UPSILON

gtuhonors.org

OFFICERS

2003

President
Dr. Carol Rosen
Department of Geography
University of Wisconsin–Whitewater
Whitewater, WI 52190
rosenc@post.uww.edu

First Vice-President
Dr. Leon Yacher
Department of Geography
Southern Connecticut State University
New Haven, CT 06515-1355
yacher@southernct.edu

Second Vice-President
Dr. Howard G. Johnson
Department of Physical and Earth Sciences
Jacksonville State University
Jacksonville, AL 36263
hjohnson@juccu.jsu.edu

Executive Secretary
Dr. Virgil Holder
Geography and Earth Science
University of Wisconsin–La Crosse
La Crosse, WI 54601
holder.virg@uw lax.edu

Comptroller
Dr. Leon Hallman
Office of International Studies
P.O. Box 6152
Stephen F. Austin State University
Nacogdoches, TX 75967-6152
ihallman@sfasu.edu

Historian
Dr. Orland Maxfield
533 North Willow
Fayetteville, AR 72701
(501) 442-4707

Student Representatives
Dawn Drake
Department of Geography and Regional Planning
Indiana University
Indiana, PA 15706

Cathryn Springer
Department of Geography
Southwest Texas State University
San Marcos, TX 78666

Omega Omega (Alumni)
Dr. Richard Earl
Department of Geography
Southwest Texas State University
San Marcos, TX 78666
re02@swt.edu

Immediate Past-President
Dr. Catherine Lockwood
Department of Geography
Chadron State College
Chadron, NE 69337
clockwood@csc.edu

Editor, The Geographical Bulletin (ex officio)
Dr. C. Nicholas Raphael
Department of Geography and Geology
Eastern Michigan University
Ypsilanti, MI 48197
joanraphael@aol.com

© Copyright by GAMMA THETA UPSILON 2003
Printed in the United States of America
Edwards Bros., Ann Arbor, Michigan
ISSN 0731-3292
Gamma Theta Upsilon and The Geographical Bulletin

Gamma Theta Upsilon (GTU) was established in 1928 as a professional geography honor society. The organization was founded by faculty members and students at Illinois State University in Normal, Illinois to recognize and promote scholarship in geography. Since its inception 220 chapters of the honor society have been installed, mostly in the United States. Currently the society has over 50,000 members worldwide and will be observing 75 years of service and activity to the profession in 2003.

The symbolism of the society is embodied in the key insignia printed on the front cover of the Geographical Bulletin. The body of the key is seven sided and represents the seven continents of the earth. The Greek letters CΣΤ represent the three great environmental domains of our planet: Ge (Earth), Thalassia (sea), and Hypaithrois (atmosphere). The waves in the center of the key signify the major oceans of the world and the star is symbolic of Polaris, which guided travellers over the lands and oceans of the northern hemisphere for centuries.

The discipline of geography has continuously evolved particularly since 1980. New technologies, rapid and more accurate data retrieval methods, and the expansion of knowledge have continually redefined the parameters of the discipline. Emerging methodologies such as Geographical Information Systems (GIS) and the introduction of numerous new periodicals reflect the stimulation the discipline has recently received. Also, new and creative spatial points of view and the “globalization” agenda enunciated in recent years by governments and industries on the international scene, coupled with the lack of basic geographical knowledge by students and the public at large, have rekindled the teaching of geography in school systems. Educators and the Geographic Alliances are helping to address curriculum issues that are redirecting the discipline and placing it in a more prominent place throughout the nation.

At the university level, as geography expanded, subdisciplines have evolved. Urban Planning, Mountain Environments, Hazards, Military Geography and Global Change are some examples. In the year 2001, the American Association of Geographers (AAG) listed over 50 topical proficiencies and specialty groups of its organization. Also the Association recognizes 95 area or regional proficiencies its members are pursuing. Although “applied” geography has emerged to help solve immediate problems, regional issues continue to hold a wide and professionally active audience.

Gamma Theta Upsilon has responded and has supported these unprecedented changes through scholarships, speakers to university departments and the promotion of research and publication. Currently Gamma Theta Upsilon awards five scholarships to undergraduates, graduating seniors and to a graduate student in the field of geography that hold membership in the society. In cooperation with the AAG the society funds an educational outreach effort through the “Visiting Scientist Program” to Geography Departments in colleges and universities. The Geographical Bulletin publishes articles and reviews of interest to geographers and lay persons alike.

Gamma Theta Upsilon is governed by an elected Executive Board of professional geographers and students as mandated by the Constitution, Bylaws and Procedures of the honor society. It formally convenes twice per year; during the annual meeting of the AAG usually in spring and the annual meeting of the National Council of Geographic Education usually in the fall. As part of its fall agenda a business report is presented by the Officers of Gamma Theta Upsilon to all members of the society in attendance.

The Geographical Bulletin began publication as an outlet for student research in 1970 and is published biannually. Indeed many students who have gone on to graduate school in geography and related fields have had the opportunity to see their first professional publication appear in the Bulletin. To foster and encourage student publication a “Best Student Paper Award” and a fifty dollar prize is annually awarded by Gamma Theta Upsilon. Published articles are selectively abstracted in Current Geographical Publications of the American Geographical Society, Geo-Abstracts and Sociological Abstracts. The publication is housed in approximately 100 libraries.
The Geographical Bulletin

NOVEMBER
Vol. 45
2003 No. 2

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Editors</th>
</tr>
</thead>
</table>
| C. Nicholas Raphael
(ex Officio)
Eastern Michigan University
Ypsilanti, MI |
| Xiaoping Shen
Central Connecticut State University
New Britain, CT |
| Robert Rosing
Salisbury State University
Salisbury, MD |
| Howard Johnson
Jacksonville State University
Jacksonville, AL |
| Stephen Podewell
Western Michigan University
Kalamazoo, MI |
| Wendy Shaw
Southern Illinois University
Edwardsville, IL |
| James Lowry
SF Austin State University
Nacogdoches, TX |
| Donald Berg
South Dakota State University
Brookings, SD |

Geography, Gamma Theta Upsilon (GTU), and the Millennials in the New Millennium. M. Duane Nellis (West Virginia University) .. 81

Indonesia: A Geopolitical Study. Jasem M. Karam (University of Kuwait)... 86

Multimedia Technology in the School Geography Classroom: A Case Study. Daniel P. Donaldson (University of Central Oklahoma)... 94

Afghanistan’s Cultural Diversity: A Reflection of its Turbulent Past. James B. Dalton, Jr. (U.S. Military Academy, West Point) ………………………………………….. 106

Blame Walt Rostow for Miss Som Rasmey’s Acid Bath. David J. Nemeth (University of Toledo) ………………… 114

Race and American College Testing (ACT) Scores in Illinois. Wendy Shaw and Bin Zhou (Southern Illinois University)……………………………………………………… 121

News from the Chapters 2002–2003……………………………… 135

BOOK REVIEWS

Fieldwork Dilemmas: Anthropologists in Postsocialist States. Hermine G. De Soto and Nora Dudwick, Editors .. 137

Human Impact on Ancient Environments. Charles L. Redman …………………………………………………… 139
Editorial Policy and Instructions to Authors

All manuscripts must be in acceptable form and ready for peer review. Contributions to The Geographical Bulletin of Gamma Theta Upsilon should follow the general specifications noted below:

1. All manuscripts should be double spaced on 8½” × 11” paper with 1½” margins on all sides. Type on one side only. Submit the original and one copy of the manuscript. Use 10 or 12 point type only.

2. References, tables, charts and other graphics such as maps and photographs should be cited parenthetically in the text as follows: (Wilhelm, 1998), (Table 3), or (Fig. 2). If a published statement is quoted use page numbers e.g. (Wilhelm, 1999, p. 3–4). Double space references on a separate page immediately following the text. Footnotes, appendices, postscripts are to be avoided. All references cited in the text should be listed and double spaced alphabetically by author as noted below:

3. All tables and figures must be typed on separate pages, double spaced and referenced by Arabic numerals. Include a list of double-spaced table and figure captions.

4. All line drawings and graphics must be in finished form and suitable for reduction to 7.5 by 5 inches. Maps must have scales, a fine neat line serving as a boundary and patterns which will tolerate reduction. All graphics and photographs will be black and white and of professional quality. Data, images and graphics off the web are not necessarily of publishable quality. It is the author’s responsibility to obtain copyright release in writing to use copyrighted material.

5. An abstract up to 150 words double spaced followed by up to five key words must be included on a separate page. The abstract should state the objective, methods and conclusions of the paper.

6. It is the author’s responsibility to obtain permission to use copyrighted material from papers, books, and the Web. Web page maps/photos are not necessarily reproduction quality.

7. If the manuscript is put on a word processor use the same type style and font size throughout the paper to include all headings and subheadings. Do not italicize books and periodicals. Do not use bold type. Underline these words and they will be typeset in italic type by the printer.

8. It is suggested that student manuscripts be reviewed by a faculty member for editorial comments prior to submission.

Send two copies of all manuscripts to:
Dr. C. Nicholas Raphael, Editor
The Geographical Bulletin
Department of Geography and Geology
Eastern Michigan University
Ypsilanti, Michigan 48197
Telephone: (734) 487-8591
Fax: (734) 487-6979
E-mail: craphael@emich.edu

The Editor and Editorial Board of The Geographical Bulletin and its Board of Directors and officers are not responsible for the facts, opinions, or statements of the authors contained in this volume.
INTRODUCTION

In reviewing GTU’s Gamma Theta Upsilon (GTU) history, one sees where this international honor society has experienced periods of sustained growth, and it continues to play an important role in geography’s success (Maxfield, 2003). And today, we not only celebrate the first 75 years of GTU’s history but also we begin to look forward to a new generation of college students, a new generation of geographers—a generation some have referred to as the millennials—with their changing values and expectations.

In this keynote address, I would like to briefly comment on this new generation in the context of GTU and geography and how universities are adjusting to changing expectations, then I will conclude with some specific examples of emerging geography’s and future opportunities.

THE NEW GENERATION: THE MILLENNIALS

The millennials—the post baby boomers and post generation X-ers—are the new generation of College students. They are generally characterized as those born in or after 1982 and reflect the era of the
wanted child, the protected child, and the worthy child. These children are, in Howe and Strauss’s words, “collectively vital to their parents sense of purpose” (Howe and Strauss, 2000). Theirs is also the largest generation in U.S. history to enter higher education. Yet, at the same time nationally, even though many colleges are growing in enrollments, budgets are being seriously cut with the downturn in the economy, which creates its own set of issues.

In the context of geography and academically, there are various challenges or sensitivities that we need to be aware of relative to the millennials (Fig. 1).

On the academic side, the millennials grew up with standards and metrics for measuring success—so many millennials prefer subjects in which they can measure their objective progress. Geography has certainly been in the standards game, and some of us have restructured courses and our approach in teaching to enhance the learning paradigms for objective student success. Such developments are important in the context of millennials desires and societies expectations.

A second millennials challenge relates to understanding how young people relate to information. In Future Shock (1984), Alvin Toffler predicted that the end of the last millennium would be characterized by valuing complexity over simplicity. Some believe we now see a flip in university student attitudes—where students are seeking simplicity over complexity. And geography, which synthesizes information in addressing multifunction problems (e.g. through GIS and spatial modeling), helps simplify relationships and understanding of complex problems. Such approaches can easily relate to this new generation as we help meet societies needs. That doesn’t mean we don’t ask hard and complex questions—but through technology, we have an opportunity to look efficiently and effectively at a broader range of questions.

The third challenge focuses on how the millennials relate more broadly to the university experience and their expectations—or maybe even more so, the expectations of their parents. Collectively, as I have said, these millennials are vital to their parents sense of purpose—and with this attitude, there seems to be an expectation that everyone is above average—the Lake Wobegon effect, so this creates unique challenges. Yet at the same time, there does seem to be at many universities, a marked improvement in student achievement and performance—yes, more members eligible for GTU! But student and parent attitudes also treat higher education as a consumer good that through tuition gives them rights for success. Certainly such attitudes can be dangerous if taken too far.

RE-INVENTING UNDERGRADUATE EDUCATION

Universities are also changing in new ways as we try to improve the learning environment for our students. In 2001, the Boyer Commission published, Reinventing Undergraduate Education: Three Years after the Boyer Report. The original Boyer Report three years earlier had criticized American research universities for ignoring undergraduate education. In this latest report based on response from 123 research universities, they are now much more oriented toward research based learning, inquiry based learning, and the development of a capstone experience for all undergraduates. It is also clear that these same themes have been strengthened in many traditional liberal arts colleges and universities.

I believe these recently re-discovered values related to the undergraduate education experience as articulated in the Boyer Report have long been central to what GTU promotes. In addition to furthering professional interest in Geography, as many of you know, a few other purposes of GTU relate to: 1) strengthening student and professional training

Figure 1.
The New Millennials

- Standards and Metrics
- Information Processing
- Changing Expectations

82
through academic experiences in addition to those in the classroom and laboratory, 2) encouraging high quality research through *The Geographical Bulletin* as a publication outlet, and 3) providing scholarship funds that further student research in geography.

THE VALUE OF HONOR SOCIETIES

Despite these valuable purposes of GTU and other honor societies in general, such organizations must be prepared to adjust to the changing trends that potentially could have significant impact on such organizations’ sustainability. Such trends as those in academia, society, organizationally, and professionally have implications for honor societies (Mitstifer and McFall, 2000).

Academically, for example, there are additional changes in education beyond what I have already mentioned that challenge the need for socialization—the impact of technology-based learning could, for example, promote more individualism. And then there is grade inflation and challenges to some of the historic traditions in higher education.

There are also societal dimensions that I have already alluded to related to emphasis on family and family life, and less on external linkages. Such emphasis could reduce the perceived value of such groups as GTU. And organizationally as well, people are now much more selective as to where they place their membership—where they place their money—and certainly from a student perspective with dramatic increases in tuition, decisions as to what is a priority and what is not. So where does GTU fit within that context? I would argue that it clearly enhances engagement in numerous ways—whether through field trips, sponsored trips to national meetings, research opportunities, or through special lectures. But students weigh these values in different ways in the context of such organizations.

Professionally—there is continued emphasis on specialization—as B.L. Turner wrote recently in the *Annals* (2002), we now have geographic information science and earth system science, and human-environmental science. So students may lack a clear understanding as to what is Geography and how it relates to an honor society in the discipline.

GEOGRAPHY: MEETING CHANGING NEEDS

In the context of geography, Susan Cutter, Reg Golledge, and Will Graf recently published an article in the *Professional Geographer* related to the “Big Questions in Geography” (2002). And I have adapted this to my own interests in rural geography—I think the article clearly highlights the breadth of our discipline and I would argue the strength of our discipline through this breadth (Fig. 2). It is the last of these key questions on which I would like to elaborate.

Old-timers like me remember 78 LP’s, 8 track tapes, computer cards and mainframes. The millennials have grown up with DVD’s, hundred channel satellite TV’s, and micro-chips, along with the changing values and approaches to learning that I have already alluded to—so it is clearly to me that we need to capitalize on the last of these themes related to technology if we are going to continue to strengthen our discipline, and the opportunities for our students. I am not saying we should abandon any of our traditions in geography, but we should also be aggressive in the use of pervasive computing—whether it be web based, Internet commerce, wireless communication or through the use of small electronic devices—and as opportunities present themselves—integrating such computing capacities to further such geographic specialties as GIS and remote sensing.

In remote sensing alone, there are exciting new sensors, new applications, and new challenges of data integration. In new sensors there are over a dozen government and commercial imaging systems in orbit, with spatial resolutions from 1 to 30 meters—and with the commercial market forecast to soon overtake government demands. In my own work in Botswana, for example, I have used GIS and remote sensing to monitor natural resource change. I have also used GIS and remote sensing in West Virginia to under-
Figure 2.
Some Big Questions in Rural Geography.

- What makes rural places and regions different from one another and why is it important?
- How do people, resources, and ideas in a rural environment move from one area to another?
- How have rural environments been transformed by human action?
- What is the nature of spatial thinking, reasoning, and abilities as it relates to understanding of rural areas?
- What role has geographical skill played in the evolution of rural settlement, and what role can it play in predicting the future?
- How and why do sustainability and vulnerability change from one rural area to another over time?
- What role will remote sensing, GIS, and virtual systems play in learning about rural areas?

(Source: modified from Cutter et al., 2002 p 307)

stand forest canopy structure and forest cover dynamics and there are new ways this information is being made accessible via the web to decision-makers. These are but two examples of what I believe are exciting areas of rural geography that link geographic information sciences and geographic analysis to analyzing future trends. The same approaches are illustrative of the exciting developments occurring in Geography.

CONCLUSION

GTU and Geography have a bright future—but we must embrace the opportunities that are presented to us on a range of fronts. As we look to the future I believe we need to have the following priorities for our discipline and for GTU as an honor society:

1) We need to develop mechanisms to ensure we engage this new generation of geographers.
2) We need to improve the way we use pervasive computing in geography—GIS, remote sensing, web access, Internet commerce and communication (including cybergeography), and virtual worlds offer opportunities for asking new questions in geospatial analysis.
3) We need to be more engaged in debates related to government policy—not just data access and standards, but we also have a role to play in debates on globalization, terrorism, and regional conflicts.
4) We need to foster research partnerships—keeping geography out front—new priorities at the National Science Foundation, for example, present an opportunity for geography to be central to new environmental research. And we need to involve students in such efforts.
5) And, we need to raise the visibility and influence of geography whenever possible. Promoting GTU is an important part of such an effort.

As we look to the future, GTU certainly can play an important role in recognizing our best students, and furthering the breadth of Geography in a variety of ways. I look to the future with optimism, that we will continue to make headway not only for advancing Geography but also to the continuing importance of GTU.

REFERENCES:

